Respective roles of cyclobutane pyrimidine dimers, (6-4)photoproducts, and minor photoproducts in ultraviolet mutagenesis of repair-deficient xeroderma pigmentosum A cells.

نویسندگان

  • E Otoshi
  • T Yagi
  • T Mori
  • T Matsunaga
  • O Nikaido
  • S T Kim
  • K Hitomi
  • M Ikenaga
  • T Todo
چکیده

The role of UV light-induced photoproducts in initiating base substitution mutation in human cells was examined by determining the frequency and spectrum of mutation in a supF tRNA gene in a shuttle vector plasmid transfected into DNA repair deficient cells (xeroderma pigmentosum complementation group A). To compare the role of two major UV-induced photoproducts, cis-syn cyclobutane-type pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs), each photoproduct was removed from UV-irradiated plasmid by photoreactivation before transfection. Removal of either CPDs or 6-4PPs by in vitro photoreactivation reduced the mutation frequency while keeping the mutation distribution and the predominance of G:C-A:T transitions as UV-irradiated plasmid without photoreactivation, indicating that both cytosine-containing CPDs and 6-4PPs were premutagenic lesions for G:C-A:T transitions. On the other hand, A:T-G:C transitions were not recovered from plasmids after the removal of 6-4PPs, whereas this type of mutation occurred at a significant level (11%) after the removal of CPDs. Thus, the premutagenic lesions for the A:T-G:C transition are 6-4PPs. Removal of both CPDs and 6-4PPs resulted in the disappearance of mutational hot spots and random distribution of mutation as observed in unirradiated control plasmids. However, the mutational spectrum of photoreactivated plasmids differed significantly from that of unirradiated plasmids. A characteristic feature is a high portion of A:T-T:A transversions (11%) in the photoreactivated plasmid. This mutation is due to nondipyrimidinic "minor" photoproducts, and the mutation spectrum suggests that TA*, the major photoproduct of thymidylyl-(3'-5')-deoxyadenosine, is the premutagenic lesion for this mutation. This is the first report revealing the distinct mutagenic roles of the major UV photoproducts and "minor" photoproducts by the use of (6-4)photolyase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronic low-dose ultraviolet-induced mutagenesis in nucleotide excision repair-deficient cells

UV radiation induces two major types of DNA lesions, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidine photoproducts, which are both primarily repaired by nucleotide excision repair (NER). Here, we investigated how chronic low-dose UV (CLUV)-induced mutagenesis occurs in rad14Δ NER-deficient yeast cells, which lack the yeast orthologue of human xeroderma pigmentosum A (XPA). Th...

متن کامل

In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product.

The initial step in mammalian nucleotide excision repair (NER) of the major UV-induced photoproducts, cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs), requires lesion recognition. It is believed that the heterodimeric proteins XPC/hHR23B and UV-DDB (UV-damaged DNA binding factor, composed of the p48 and p127 subunits) perform this function in genomic DNA, but their requireme...

متن کامل

CPDs and 6-4PPs play different roles in UV-induced cell death in normal and NER-deficient human cells.

Ultraviolet (UV) light generates two major DNA lesions: cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproducts (6-4PPs), but the specific participation of these two lesions in the deleterious effects of UV is a longstanding question. In order to discriminate the precise role of unrepaired CPDs and 6-4PPs in UV-induced responses triggering cell death, human fibroblast...

متن کامل

Different removal of ultraviolet photoproducts in genetically related xeroderma pigmentosum and trichothiodystrophy diseases.

To understand the heterogeneity in genetic predisposition to skin cancer in different nucleotide excision repair-deficient human syndromes, we studied repair of cyclobutane pyrimidine dimers (CPDs) and of pyrimidine(6-4)pyrimidone (6-4PP) photoproducts in cells from trichothiodystrophy (TTD) patients. TTD is not associated with increased incidence of skin cancer, although 50% of the patients ar...

متن کامل

The xeroderma pigmentosum group C gene leads to selective repair of cyclobutane pyrimidine dimers rather than 6-4 photoproducts.

We investigated the contribution of the xeroderma pigmentosum group C (XPC) gene to DNA repair. We stably transfected XPC cells (XP4PA-SV-EB) with XPC cDNA and selected a partially corrected (XP4PA-SE1) and a fully corrected (XP4PA-SE2) clone. Cell survival after UVC (254 nm) exposure was low for XP4PA-SV-EB, intermediate for XP4PA-SE1, and normal for XP4PA-SE2 cells. XP4PA-SV-EB cells had unde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 60 6  شماره 

صفحات  -

تاریخ انتشار 2000